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Abstract The question of computing fixed points and cycles for the discrete logistic equation will be
considered. A method will be presented for accomplishing these tasks. Illustrative cycles will be given
to demonstrate use of the method. Along the way we will find out some interesting tidbits about the
fixed points and cycles. We will also see the manner in which Maple can be used to explore a complex
problem.
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1 Introduction
We are interested in the task of computing fixed points and N-cycles for the well known and much
studied discrete logistic equation

xn+1 = kxn (1− xn) (1)

where k is a constant satisfying 0 ≤ k ≤ 4. We are particularly interested in values of k between 3
and 4. Background and a detailed discussion of Eq. (1) may be found in [3]. A delightful elementary
introduction may be found in [1]; and a more detailed mathematical treatment may be found in [2].

Finding N -cycles entails finding the fixed points of FN(x), the N th composition of the function

F (x) = kx(1− x) (2)

with itself. We thus must find the solutions of

FN(x) = x. (3)

We must then determine the N -cycles determined by the fixed points. We are interested primarily in
“true” (prime in the terminology of [3]) N -cycles, ones forming a sequence x0, . . . , xN−1 where x0

is a solution of Eq. (3), F (xN−1) = x0, and N − 1 is the first value for which the latter occurs. This
is in general a formidable task since FN(x) is a polynomial of degree 2N . While it is possible to use
tools available in a Computer Algebra System (CAS) such as Maple 11 [4] to find the fixed points
and corresponding cycles directly for relatively small values of N , say, N < 5, it is effectively not
possible to do so for larger values of N . We will describe a method that we have used to help Maple
accomplish these tasks for values of N up to 15 and for general values of k. From our discussion,
it should become clear that constructing cycles without the use of a CAS such as Maple is simply
intractable even for small values on N .

We note that cobweb diagrams [1] are used to display N -cycles (more generally, they are to
depict the iterates for any sequence). These diagrams depict the relevant fixed points along with the
graphs of y = F (x) and the line y = x. Starting from a fixed point, locate the corresponding point on
the curve y = F (x). Then locate the corresponding point on the line y = x. Repeat this process to
follow the formation of the N -cycle. This process is illustrated in the animated gif files attachments
that are mentioned later in this paper.

It should be noted that our approach is somewhat empirical. However, the onset values of k at
which cycles of length 1-8 first appear can be determined analytically. (See [6] and the references
therein). In each such case, we were able to find cycles of the desired length for each of these onset
values. We experimented to approximate the onset values for cycles of length 9-12. (Refer to the
attached Maple worksheet for the approximate onset values we obtained. The worksheet also contains
a summary of the numbers of cycles of length N that we were able to locate for different values of k.)
To get an idea of where to start looking for cycles of these lengths, we used Sharkovskii’s Theorem
[2]-[3] (which involves ordering the natural numbers in a manner such that if any cycle of length N
exists, all successors in the ordering also yield cycles of length N ). Each of the cycles reported in
this paper is consistent with Sharkovskii’s ordering and with the onset values for shorter cycles. As a
matter of interest, we further note that certain values of k yield cycles of several lengths. For example,
k = 3.9 yields cycles of length 2-12 and k = 3.75 yields cycles of length 2-10. Finally, we note that it
is instructive to use the attached worksheet to experiment with values on each side of the onset values
to see how the cycles with longer lengths appear.
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2 The Easiest Case, k = 4

Though the title of this section may seem surprising to readers familiar with the complexity of the
logistic equation, the easiest case to handle occurs when k = 4. In this case, Eq. (3) has precisely 2N

real fixed points and N -cycles exist for each N . It is instructive to consider the manner in which the
fixed points arise for this value of k.

Graphs of F1(x), F2(x), and F3(x) suggest there are precisely 2N fixed points for each value of N
and it suggests how we might go about finding the fixed points of FN(x). A simple calculation shows
that the following hold

FN+1(x) = 4FN(x) (1− FN(x)) (4)

F ′N+1(x) = 4F ′N(x) (1− 2FN(x)) (5)

Eq. (4) and Eq. (5) may be used to show that the zeroes of FN+1(x) = 0 consist of the zeroes of
FN(x) = 0 along with new values determined by FN(x) = 1. The values for which FN+1(x) = 1
are the values for which FN(x) = 1

2
; and the zeroes of FN+1(x) = 0 thus consist of 0 and 1 along

with 2N − 2 zeroes with multiplicity 2. Each of the intervals with these distinct zeroes as endpoints
contains exactly two fixed points of FN+1(x). As an example, the zeroes of F1(x) are 0 and 1.
(Alternatively, the intervals between successive points with F ′N(x) = 0 each contain one fixed point.)
These two values give rise to 0, 1

2
, 1

2
, and 1 as the zeroes of F2(x). These four values in turn yield

the zeroes of F3(x) consisting of these four values along with the two multiplicity 2 values 1
2

+
−

√
2
4

.
The corresponding intervals each contain the two fixed points that can be located by subdividing the
interval twice. Using the Maple solve command for N = 2 yields the fixed points x = 0, x = 3

4
,

and x = 5
8

+
−

1
8

√
5. For N = 3 it yields the fixed points (rounded for display purposes) 0, 0.11698,

0.18826, 0.41318, 0.61126, 0.75, 0.95048, and 0.96985. Figure 1 depicts a 2-cycle and a 3-cycle
determined by these fixed points.

In principle, the Maple solve command can be used to solve the necessary polynomial equations
in the above procedure. Unfortunately, for values of N as small as 4 or 5, use of the solve command
is unsuccessful in some cases and in other cases an incorrect number of solutions is found. Use of
the numeric fsolve command leads to similar results since fsolve recognizes a polynomial as a
“known” function and employs symbolic procedures to solve polynomial equations. Difficulties using
solve and fsolve led us to explore other ways to determine the fixed points. An alternate way to
find the fixed points without directly solving polynomial equations is described in the next section.

3 Backward Compositions
If x = Fn(x) then we may solve the equation x = kxn−1 (1− xn−1) for the two values xn−1 for
which F (xn−1) = x. We refer to these two values as ancestors of x. (They are sometimes referred to
as predecessors or preimages of x.) These values are given by

xn−1 =
1

2

(
1 +
−

√
1− 4

k
x

)
. (6)
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Figure 1: 2-cycle and 3-cycle for k = 4

Let us then define the functions

g0(x) =
1

2

(
1−

√
1− 4

k
x

)
(7)

g1(x) =
1

2

(
1 +

√
1− 4

k
x

)
(8)

For a given value of x, g0(x) and g1(x) yield the two immediate ancestors of x. The four ancestors of
these values are given by the compositions g0◦g0(xn−1), g0◦g1(xn−1), g1◦g0(xn−1), and g1◦g1(xn−1).
Continuing in this fashion we can locate the 2N ancestors of x. We can then locate the fixed points of
x = FN(x) by solving the equations

x = Φ(x) (9)

where Φ(x) is any of the 2N nested square root compositions

gi0 ◦ · · · ◦ giN (x)

and each ij is 0 or 1 since any such solution satisfies Eq. (3). To locate the zeroes of the functions, we
used a Maple adaptation Zeromw of the well-known Zero root finder [5] which uses a combination
of the secant method and bisection. Although the fixed points of FN(x) become closely spaced for
increasing N , they are well-separated by the above functions and are located easily. Figure 2 depicts
a 6-cycle for k = 4. We obtained similar N -cycles for larger values of N . (Values of N in the range
12–15 were as large as our computer was willing to tolerate.) None are displayed here because higher
order cycles look very much like the displayed 6-cycle due to the fact that some of the cycle points
tend to cluster near 0 and 1 making it hard to distinguish between them in the plotted cycles.

Note that when k = 4 the domain of each of the backward compositions is the interval [0, 1]. This
is as good as it gets. In general, the real domains of the functions Φ(x) are subsets of this interval,
that is, some of the ancestors of x are complex. The key to making our approach work is to find these
real domains so that we can locate the real ancestors of x. This will be discussed further in the next
section.
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Figure 2: 6-cycle for k = 4

4 Backward Composition Domains
In order to find a real fixed point x using the procedure described above, x must belong to the domain
of each of the nested square root functions used to build Φ(x). For g0(x) and g1(x) to be real, we must
have x ≤ x0 = k

4
. An interesting thing happens when we consider the cut points at which successive

discriminants are equal to 0. Compositions of length two lead to the cut point

x1 = x0

(
1− (2x0 − 1)2

)
. (10)

Continuing with successively higher order compositions, we inductively find the sequence of cut
points satisfying

xj = xj−1
(
1− (2xj−1 − 1)2

)
, j = 1, . . . , N − 1 (11)

A simple calculation shows that
xj = kxj−1 (1− xj−1) , (12)

That is, the cut points are the first N terms of a logistic sequence with initial iterate equal to k
4
. This,

perhaps surprising, tidbit is quite useful. The domains of each of the Φ(x) functions are (single)
intervals of the form [a, b] where a and b are two elements of this sequence with a < b or of the
form [a, b] where a = 0 and b is an element of the cut sequence. For k = 4 note that the sequence is
1, 0, 0, . . . leading to the interval [0, 1] as the domain for each Φ(x). For other values of k, some of
the cut points may be close together and in some cases the real domain of a particular composition
degenerates to a single point. This is one reason it is necessary to locate the cut points since some of
the fixed points tend to cluster in these small intervals.

Although it is relatively easy to obtain N -cycles for a good many values of N and k, our procedure
has two drawbacks. It requires the solution of 2N nonlinear equations making it impractical for large
values of N due to the exponentially increasing complexity of the calculations. However, we have
used it to locate cycles for many values of k and values of N up to 15 (although in some cases the
calculation times for N > 12 are quite long). Figures 3–8 represent a miscellaneous sample of cycles
of various lengths 2–13. A second nasty drawback can occur even for some small values of N . Unlike
the case k = 4, it is necessary in some cases to subdivide the domains more than twice in order to find
bracketing intervals containing the fixed points. In most cases 2–10 subdivisions are sufficient but in
some situations many more subdivisions are required. The cases we have in mind are the ones near
the “onset” values of k discussed in the next section.
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Figure 3: (a) 2-cycle for k = 3.1 (b) 3-cycle for k = 3.83
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Figure 4: (a) 4-cycle for k = 3.5 (b) 5-cycle for k = 3.83
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Figure 5: (a) 6-cycle for k = 1 +
√

8 (b) 7-cycle for k = 3.85

5 Onset Values of k
Since Zeromw requires a sign change to locate zeroes, success of the procedure described above
depends on being able to subdivide the domains of the composition functions to obtain bracketing
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Figure 6: (a) 8-cycle for k = 3.55 (b) 9-cycle for k = 3.9
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Figure 7: (a) 10-cycle for k = 3.85 (b) 11-cycle for k = 3.85
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Figure 8: (a) 12-cycle for k = 3.9 (b) 13-cycle for k = 3.7

intervals for the fixed points. In some cases, our procedure is inefficient in locating zeroes with
multiplicity greater than 1 or for nearby values of k for which there are very closely spaced zeroes
near such a zero with multiplicity greater than 1. Such zeroes occur for special onset values of k at
which cycles of longer lengths originate. Several such onset values are known (see [6] and the links
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cited therein). Figures 9–12 depict cycles of length 3–8 corresponding to these onset values. Each
cycle depicted was obtained by rounding the 54th digit of the corresponding exact value of k upward.
This was done for convenience and since for some values of k, there is no true cycle of the desired
length except for values of k strictly larger than the onset value.

We should note that handling the k = 3 onset value for 2-cycles in this manner was unsuccessful.
Use of the method is prohibitive for smaller values of k near k = 3 due to the number of required
subdivisions of the composition domains. However, in the Maple worksheet we used, it is possible to
reduce the size of the composition domains if additional information is available. (Such information
may be obtained by inspecting plots of the functions used in the root finding.) k = 3.000000001 was
the smallest value of k for which we bothered to do this in order to compute a true 2-cycle. Since
the solve command is able to find the fixed points of F2(x) for values of k near 3, it does a more
satisfactory job finding the relevant fixed points than does the present method for values of k slightly
larger than 3. We should also note that we were able to use the Maple factor to find the fixed points
and onset cycles for these values of k (albeit at considerably more expense). The precise values of k
used to produce the other onset cycles depicted in Figures 9–12 were:

3-cycle:
3.82842712474619009760337744841939615713934375075389615
4-cycle:
3.44948974278317809819728407470589139196594748065667013
5-cycle:
3.73817237526596236943026155967953197344411544048999193
6-cycle:
3.62655316169497372587723225209331749170947578579502470
7-cycle:
3.70164076416034958182464378984088922014429158951520644
8-cycle:
3.54409035955192285361596598660480454058309984544457368

Though somewhat more cumbersome (due to having to deal appropriately with poles), we found
it possible to also produce these cycles in a different way. By replacing the equation x − Φ(x) = 0
with

x− Φ(x)

1− Φ′(x)
= 0 (13)

it was possible to locate higher multiplicity zeroes and very closely spaced zeroes using far fewer
subdivisions of the composition domains. The cycles depicted in Figures 9–12 were obtained in this
manner.

6 Suggested Student Explorations
The logistic equation is rife with interesting properties that beg to be investigated. Following are a
few interesting questions that students might wish to explore.
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Figure 9: (a) Onset 2-cycle for k = 3 (b) Onset 3-cycle for k = 3.828
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Figure 10: (a) Onset 4-cycle for k = 3.449 (b) Onset 5-cycle for k = 3.738
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Figure 11: (a) Onset 6-cycle for k = 3.626 (b) Onset 7-cycle for k = 3.701

6.1 Question 1
To develop an appreciation for the manner in which cycles of longer length develop near the onset
values of k, you might wish to study the following cycles. Figure 13 depicts a 4-cycle for k = 3.54
and an 8-cycle for k = 3.55. Note how the additional close zeroes in the latter cycle get into the act
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Figure 12: Onset 8-cycle for k = 3.544

and prevent a 4-cycle from forming.

(a)

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b)

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 13: (a) k = 3.54 4-cycle (b) k = 3.55 8-cycle

6.2 Question 2
Invite students to experimentally find the “smallest” values of k that yield true 9-, 10-, 11-, and 12-
cycles. They should discover that

• k = 3.68725 yields a 9-cycle.

• k = 3.60540 yields a 10-cycle.

• k = 3.68175 yields an 11-cycle.

• k = 3.58225 yields a 12-cycle.

The corresponding cycles are depicted in Figure 14. Animated versions of these cycles follow Figure
14. Depending on what is displayed, you need only play the cycle forward or backward using the
control box.
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Figure 14: (a) 11-cycle and (b) 12-cycle

Animation of 10-cycle for k = 3.60540

6.3 Question 3
If you wish to really try your hand with Maple programming, there are several ways in which the
attached worksheet can be improved. The manner in which the real domains of the backward compo-
sition functions are determined is relatively time consuming; consider using some care to improve it.
Another hotspot is the processing of fixed points to determine which ones produce N -cycles. Perhaps
the best place to improve performance is to consider using different numbers of subdivisions of the
real domain intervals (that is, to use the subdivs array option in the program).

6.4 Question 4
Rather than solve the equations x = Φ(x), consider solving the equations F (x) = Φ(x) where Φ(x)
is any of the 2N−1 nested square root compositions gi0 ◦ · · · ◦ giN−1

(x). You will find that you can do
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about as well with this approach as with the procedure used in this paper. Note: It is a simple matter
to change the attached worksheet to accomplish this. Be sure to study the plots of the relevant root
finding functions though.

6.5 Question 5
Investigate the question of solving the equations x = Φ(x) using fixed point iterations xn+1 = Φ(xn)
where Φ(x) is any of the 2N nested square root composition gi0 ◦ · · · ◦ giN (x). To see why you
don’t pick up all of the fixed points, study the graphs of Φ′(x) and recall the basic condition for the
convergence of a fixed point iteration.

6.6 Question 6
Explore the question of finding fixed points in the following manner. Using the functions Φ(x) it is
easy to calculate all real ancestors for a given value of x. x is a fixed point if it is equal to one of its real
ancestors. For a general value of x one can work with the function f(x) defined to be the minimum
distance between x and its real ancestors of x. A zero of this function yields the corresponding fixed
point.

6.7 Question 7
Recall that the fixed points of FN(x) are the solutions of

FN(x) = x. (14)

x = 0 is always a solution. Other solutions satisfy

GN(x) =
FN(x)

x
= 1. (15)

Note that the discontinuity at x = 0 can be removed using GN(0) = F ′N(0). Explore the question
of finding the nonzero fixed points of FN(x) by finding solutions of this equation using Zeromw
(or otherwise). Alternatively, find solutions of FN(x) = x without using this reduction. Refer to
the discussion for k = 4 to determine possible bracketing intervals containing fixed points. What
changes in that discussion are necessary for k < 4? What difficulties prevent this approach from
being effective for general values of k?

7 Summary
In this paper we considered the question of computing fixed points and cycles for iterates of the
logistic equation. A method was described for doing so which does not require directly solving high
order polynomial equations. Cycles of various lengths were given to illustrate the use of the method.
Finally, several possible student explorations were suggested.
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8 Supplemental Electronic Material
A Maple worksheet Cycles.mw that can be used to obtain the results reported in this paper can be
downloaded from the author’s web site using the following link:

http://www.radford.edu/thompson/Logistic/index.html

References
[1] Blanchard, P., Devaney, R.L., and Hall, G.H., Differential Equations, 3rd

edition, Thomson/Brooks–Cole, 2006.

[2] Devaney, R., An Introduction to Chaotic Dynamical Systems, 2nd
edition, Addison–Wesley, 1989.

[3] Holmgren, R., A First Course in Discrete Dynamical Systems, Springer, 1996.

[4] Maple, Maplesoft, Waterloo Maple Inc., 615 Kumpf Avenue, Waterloo, Ontario, Canada, 2008.

[5] Shampine, L.F., Allen, R.C., and Preuss, S., Fundamentals of Numerical Computing, John Wiley
& Sons, 1997.

[6] Weisstein, E.W, Logistic Map, MathWorld–A Wolfram Web Resource, http://
mathworld.wolfram.com/LogisticMap.html.

108

http://www.radford.edu/thompson/Logistic/index.html
http://mathworld.wolfram.com/LogisticMap.html
http://mathworld.wolfram.com/LogisticMap.html

	Introduction
	The Easiest Case,  k= 4 
	Backward Compositions
	Backward Composition Domains
	Onset Values of k
	Suggested Student Explorations
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6
	Question 7

	Summary
	Supplemental Electronic Material

	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	0.21: 
	0.22: 
	0.23: 
	anm0: 
	0.EndLeft: 
	0.StepLeft: 
	0.PlayPauseLeft: 
	0.PlayPauseRight: 
	0.StepRight: 
	0.EndRight: 
	0.Minus: 
	0.Reset: 
	0.Plus: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	1.10: 
	1.11: 
	1.12: 
	1.13: 
	1.14: 
	1.15: 
	1.16: 
	1.17: 
	1.18: 
	1.19: 
	anm1: 
	1.EndLeft: 
	1.StepLeft: 
	1.PlayPauseLeft: 
	1.PlayPauseRight: 
	1.StepRight: 
	1.EndRight: 
	1.Minus: 
	1.Reset: 
	1.Plus: 


